Gazy osłonowe do spawania metodą MIG/MAG – cz. I

dlaprodukcji.pl 1 miesiąc temu

Metoda spawania łukowego elektrodą topliwą w osłonie gazów, powszechnie znana jako metoda MIG/MAG (metal inert/active gas) lub GMAW (gas metal arc welding), jest z pewnością najczęściej stosowaną metodą spawania materiałów konstrukcyjnych. Składa się na to cały szereg zalet, ale przede wszystkim:

  • wyższa wydajność spawania w porównaniu z metodami MMA, TIG lub PAW,
  • możliwość spawania we wszystkich pozycjach przestrzennych,
  • łatwość zmechanizowania lub zrobotyzowania procesu.

Szacuje się, iż w krajach uprzemysłowionych około 60% (a w Polsce jeszcze więcej) konstrukcji i wyrobów spawanych wykonuje się z zastosowaniem metody MIG/MAG. Metoda ta umożliwia łączenie prawie wszystkich materiałów konstrukcyjnych, a zatem: stali niestopowych, niskostopowych i wysokostopowych, jak również: aluminium, miedzi, niklu, tytanu i ich stopów. W praktyce przemysłowej najczęściej stosuje się jednak spawanie metodą MAG stali niestopowych i drobnoziarnistych.

Zasada spawania metodą MIG/MAG

Proces spawania metodą MIG/MAG polega na uzyskaniu trwałego połączenia w wyniku stopienia elektrody topliwej oraz materiału łączonych elementów dzięki ciepła łuku spawalniczego, który jarzy się w osłonie gazu pomiędzy elektrodą a materiałem podstawowym. Gaz osłonowy w zależności od składu może być obojętny (metoda MIG) lub aktywny (metoda MAG). W tym miejscu należy nadmienić, iż w publikacjach i opisach na stronach internetowych pochodzących spoza obszaru Unii Europejskiej bardzo często skrót MIG stosuje się, podobnie jak GMAW, zarówno do spawania w osłonie gazów obojętnych, jak i aktywnych.

Niezależnie od rodzaju gazu osłonowego spawanie metodą MIG/MAG można prowadzić we wszystkich pozycjach przestrzennych. Najbardziej popularne i najczęściej spotykane w praktyce jest manualne przemieszczanie przez spawacza uchwytu spawalniczego wzdłuż styku łączonych elementów. Jednakże w celu zwiększenia wydajności spawania oraz zapewnienia konkurencyjności produkcji na rynkach globalnych w zakładach przemysłowych coraz częściej wdraża się spawanie metodą MIG/MAG w sposób zmechanizowany lub zrobotyzowany. Metoda MIG/MAG znajduje zastosowanie głównie w warunkach warsztatowych, gdyż osłona gazowa jest wrażliwa na ruchy powietrza (przeciąg, podmuch, wiatr), które z łatwością mogą ją zdestabilizować.

Elementy procesu spawania

Jak wynika z opisu zasady spawania metodą MIG/MAG, udział w tworzeniu trwałego połączenia biorą:

  • spoiwo w postaci drutu elektrodowego,
  • materiał podstawowy w postaci blach, rur, prętów lub wyrobów ciągnionych, kutych i oblewanych o różnych kształtach,
  • gaz osłonowy w postaci gazu aktywnego lub obojętnego.

Gaz aktywny w procesie spawania z definicji reaguje ze stopionym materiałem. To ma wpływ zarówno na charakter przenoszenia metalu w łuku spawalniczym, jak i kształt spoin oraz własności mechaniczne złączy spawanych. Gaz obojętny jest neutralny względem materiału podstawowego oraz spoiwa, a zatem nie reaguje ze stopionym materiałem.

Z drugiej zaś strony rodzaj tego gazu ma wpływ na temperaturę i rozkład jej wartości w łuku spawalniczym. To z kolei wpływa na parametry łuku i jego kształt. To w ostateczności przekłada się na przenoszenie metalu w łuku, ruch ciekłego metalu w jeziorku spawalniczym oraz kształt spoin. Na rys. 1 pokazano wpływ rodzaju obojętnego gazu osłonowego oraz dwutlenku węgla na kształt przekroju poprzecznego uzyskiwanych spoin. Argon, hel i dwutlenek węgla są podstawowymi gazami osłonowymi, gdyż mogą być stosowane samodzielnie podczas spawania metodą MIG/MAG. Pozostałe gazy, tj.: tlen, wodór, azot lub tlenek azotu, występują tylko jako dodatki do ww. trzech gazów podstawowych. Celami ich wprowadzenia są modyfikacja jarzenia się łuku i zachowania jeziorka spawalniczego, jak również poprawa własności spoin lub warunków środowiskowych spawania.

Jak już wspomniano wyżej, oprócz wpływu na kształt łuku i przekrój poprzeczny spoin gaz osłonowy wraz z parametrami prądowo-napięciowymi łuku wpływa na typ przenoszenia w nim ciekłego metalu. Może on być: zwarciowy, kroplowy (grubokroplowy), natryskowy lub wirujący (rotacyjny). Rodzaj gazu osłonowego wpływa przede wszystkim na zmianę zakresu występowania poszczególnych typów przenoszenia metalu. Powoduje także, iż nie wszystkie typy przenoszenia będą miały miejsce. Dotyczy to spawania w osłonie dwutlenku węgla i helu. Wówczas w zakresie parametrów stosowanych w praktyce przemysłowej przenoszenie natryskowe nie występuje [2, 3].

Klasyfikacja gazów do spawania metodą MIG/MAG wg PN-EN ISO 14175

W zależności od rodzaju materiału podstawowego do osłony łuku podczas spawania elektrodą topliwą są stosowane zarówno gazy obojętne (grupa I wg PN-EN ISO 14175 [4]),
jak i aktywne: utleniające (grupy: M1, M2 i M3) oraz silnie utleniające (grupa C). Istnieje jednak spora liczba mieszanek osłonowych, których skład wykracza poza składy ujęte w ww. grupach. Mieszanki te są oznaczane symbolem „Z”. Według normy PN-EN ISO 14175 gazy tworzące jednoskładnikowe gazy osłonowe lub ich mieszanki do spawania MIG/MAG są oznaczane dzięki następujących symboli: Ar – argon; He – hel; C – dwutlenek węgla; O – tlen;
H – wodór; N – azot.

Czystość gazów do spawania metodą MIG/MAG

Według tab. 4 w normie PN-EN ISO 14175 czystość obojętnych gazów osłonowych powinna mieć min. 99,99%, mieszanek gazowych M1, M2 i M3 – min. 99,9%, a dwutlenku węgla – min. 99,8%. W przypadku szeregu materiałów konstrukcyjnych te minimalne wymagania względem czystości są w zupełności wystarczające. W niektórych przypadkach ww. czystość jest jednak zbyt niska. Dotyczy to przede wszystkim spawania metodą MIG tytanu, cyrkonu i ich stopów, ale także niektórych gatunków stali wysokostopowych oraz aluminium, niklu i ich stopów. Czystość gazów obojętnych w przypadku aluminium i niklu powinna kształtować się na poziomie 99,995-99,996%, a tytanu – min. 99,997%, gdyż ten pierwiastek wchodzi w reakcje z tlenem i azotem już w temperaturze około 250°C. To powoduje, iż choćby niewielka ilość tlenu w gazie osłonowym może powodować powstawanie niedopuszczalnych kolorów nalotowych zarówno na powierzchni spoin, jak i materiału podstawowego w obszarze przyspoinowym. W skrajnych przypadkach: tworzenie się pęknięć.

Praktyka

W praktyce spawalniczej może jednak się zdarzyć, iż mimo stosowania gazów o odpowiedniej podwyższonej czystości spoiny lub obszar wokół nich będą wciąż zanieczyszczone. Wówczas w pier­wszej kolejności należy sprawdzić czystość powierzchni łączonych elementów oraz spoiwa. Następnie spróbować wymienić butle z gazem na nową. jeżeli jakość powierzchni złączy będzie przez cały czas niezadowalająca, należy szukać przyczyn powstawania zanieczyszczenia w braku szczelności uchwytu lub przewodów spawalniczych, a także w niewłaściwej technice wykonywania ściegów i/lub nieodpowiednich parametrach spawania.

Czytaj też >> Gazy osłonowe do spawania łukowego drutem litym (MAG) stali węglowych i niskostopowych

Rodzaj i obszar stosowania gazów osłonowych w metodzie MIG

Argon
Argon jest bezbarwnym, bezwonnym i pozbawionym smaku gazem obojętnym. Potencjał jonizacji argonu wynosi 15,7 V i jest o prawie połowę mniejszy niż w przypadku helu (24,5 V). Argon cechuje się także niską przewodnością cieplną, przez co transfer ciepła od środka łuku na jego peryferie jest ograniczony. To z kolei przyczynia się do wyższej gęstości łuku i koncentracji energii na mniejszej powierzchni. Skutkiem takiego kształtu łuku jest uzyskanie spoin o wąskim, wydłużonym przekroju poprzecznym (rys. 2). A zatem łuk jarzący się w osłonie argonu zapewniają: wysoka stabilność procesu, poprawny kształt spoin oraz głębokie wtopienie.

Podczas spawania metodą MIG czysty technicznie argon stosuje się głównie do spawania:

  • niklu,
  • kobaltu,
  • miedzi,
  • tytanu,
  • cyrkonu,
  • aluminium,
  • magnezu i ich stopów,
  • jak również niektórych rodzajów stali wysokostopowych.

W przypadku aluminium i jego stopów są to przeważnie elementy o względnie niedużej grubości, gdyż przy jej zwiększeniu lepsze wyniki uzyskuje się przy zastosowaniu mieszanek argonu z helem.

Piśmiennictwo zostanie opublikowane w kolejnej części artykułu.
Idź do oryginalnego materiału